4 research outputs found

    Ioonsete elektroaktiivsete tÀiturite elektromehaaniline modelleerimine ja juhtimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneIoonsed elektroaktiivsed polĂŒmeerid e. tehislihased on polĂŒmeermaterjalid, mille oluline iseĂ€rasus on vĂ”ime muuta elektrienergiat mehhaaniliseks energiaks. Elektroaktiivsetest polĂŒmeeridest valmistatud pehmetel tĂ€ituritel on mitmed huvipakkuvad omadused, nĂ€iteks suur deformatsioon madala rakendatud pinge korral, mĂ€rkimisvÀÀrne tekitatud jĂ”u ja massi suhe ning vĂ”ime töötada nii vesikeskkonnas kui Ă”hus. Niisuguste tĂ€iturite kasutamine on paljutĂ”otav eriti just miniatuursetes elusloodusest inspireeritud robootikarakendustes. NĂ€iteks vĂ”ib tuua aktiivsed mikro-manipulatsioonisĂŒsteemid vĂ”i isepainduvad pehmed kateetrid, mis on iseĂ€ranis nĂ”utud meditsiini-tehnoloogias. KĂ€esoleva vĂ€itekirja uurimissfÀÀriks on sellistest materjalidest valmistatud tĂ€iturmehhanismide modelleerimine, valmistamine ja juhtimine, pÀÀdides sisuliselt ĂŒhes tĂŒkis valmistatud mitme vabadusastmega paralleelmanipulaatorite vĂ€ljatöötamisega. Kasutades kompleksset fĂŒĂŒsikalistel, elektrokeemilistel ning mehaanilistel alusteadmistel pĂ”hinevat mudelit kirjeldatakse ja ennustatakse sellist tĂŒĂŒpi tĂ€iturmehhanismide elektrilise sisendi ja mehhaanilise vĂ€ljundi vahelisi seoseid. Mudel kirjeldab ioonide transpordi dĂŒnaamikat elektrivĂ€ljas, kombineerides Nernst-Plancki ja Poissoni vĂ”rrandeid. Mitmekihilise polĂŒmeermaterjali mehhaaniline kĂ€itumine on seotud laengu- ja massitasakaalu poolt pĂ”hjustatud eri kihtide erineva ruumilise paisumisega ja kahanemisega. KĂ”ike seda kokku vĂ”ttes ning rakendades numbrilist modelleerimist lĂ”plike elementide meetodil saadakse kvantitatiivsed tulemused, mis suudavad prognoosida tĂ€iturmehhanismi kĂ€itumist ja vĂ”imaldavad projekteerida, simuleerida ja optimeerida ka neil tĂ€ituritel pĂ”hinevaid keerulisemaid mehhanisme. Koostatud mudeli valideerimiseks modelleeriti ja valmistati kaks tööpĂ”himĂ”tteliselt sarnast, kuid erinevatel elektroaktiivsetel polĂŒmeermaterjalidel pĂ”hinevat ning eri metoodikatel valmistatud mitmest tĂ€iturist koosnevat mitme vabadusastmega mikromanipulaatorit. VĂ€itekirjas demonstreeritakse, et koostatud mudel on suure tĂ€psusega vĂ”imeline ennustama nii iga individuaalse tĂ€ituri kui ka mĂ”lema manipulaatori kĂ€itumist. Demonstreerimaks piisksadestusprintimismeetodil valmistatud manipulaatori efektiivsust, kirjeldatakse kahte erinevat kontrollrakendust. Esmalt nĂ€idatakse tagasisidestamata kontrollitavat seadet, kus pööratakse nelja tĂ€ituri abil peeglit, suunates laserikiirt X-Y tasapinnas ettemÀÀratud punktidele. Teiseks nĂ€idisrakenduseks on tagasisidestatud kontrollmetoodikaga juhitav mikroskoobi preparaadiliigutaja, mille abil saab preparaati nii tĂ”sta-langetada kui ka pöörata. Manipulaatorite valmistamise kĂ€igus leiti, et piisksadestusprintimise meetodi tĂ€psus, jĂ”udlus ja skaleeritavus vĂ”imaldavad suure tootlikkusega valmistada identseid keerulisi mitmeosalisi manipulaatoreid. See tulemus nĂ€itab ilmekalt uue tehnoloogia eeliseid traditsiooniliste valmistamisviiside ees.Ionic electroactive polymers (IEAPs) actuators are kind of smart composite materials that have the ability to convert electrical energy into mechanical energy. The actuators fabricated using IEAP materials will benefit from attractive features such as high compliance, lightweight, large strain, low voltage, biocompatibility, high force to weight ratio, and ability to operate in an aqueous environment as well as in open air. The future of soft robotic actuation system with IEAP actuators is very promising especially in the microdomain for cutting edge applications such as micromanipulation systems, medical devices with higher dexterity, soft catheters with built-in actuation, bio-inspired robotics with better-mimicking properties and active compliant micromechanisms. This dissertation has introduced an effective modelling framework representing the complex electro-chemo-mechanical dynamics that can predict the electromechanical transduction in this kind of actuators. The model describes the ion transport dynamics under electric field by combining the Nernst-Planck and Poisson’s equation and the mechanical response is associated with the volumetric swelling caused by resulting charge and mass balance. The framework of this modelling method to predict the behavior of the actuator enabled to design, simulate and optimize compliant mechanism using IEAP actuators. As a result, a novel parallel manipulator with three degrees of freedom was modelled and fabricated with two different types of electrode materials and is characterized and compared with the simulation model. It is shown that the developed model was able to predict the behavior of the manipulator with a good agreement ensuring the high fidelity of the modelling framework. In the process of the fabrication, it is found that the manipulator fabricated through additive manufacturing method allows to fabricate multipart and intricate patterns with high throughput production capability and also opens the opportunity to print a matrix array of identical actuators over a wide size scale along with improved performance. Finally, to showcase the competence of the printed manipulator two different control application was demonstrated. At first, an open loop four-way optical switch showing the capability of optically triggering four switches in the X-Y plane in an automated sequence is shown followed by closed-loop micromanipulation of an active microscope stage using model predictive control system architecture is shown. The application of the manipulator can be extended to other potential applications such as a zoom lens, a microscope stage, laser steering, autofocusing systems, and micromirror. Overall this dissertation results in modelling, fabrication, and control of ionic electroactive polymer actuators leading to the development of a low cost, monolithic, flat, multi DOF parallel manipulator for micromanipulation application.https://www.ester.ee/record=b524351

    Soft parallel manipulator fabricated by additive manufacturing

    No full text
    Conducting polymer (CP) based soft actuators are good candidates for miniaturised manipulation systems and soft robotic applications. We present the fabrication, characterization, and modelling, of a novel ionically driven soft, flat, parallel manipulator with minimal footprint actuated by CP actuators. This three degrees of freedom (3Dof) manipulator consists of four trilayer actuators with poly (3, 4- ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes on both sides of PVDF separator membrane with 1-Ethyl-3-methylimidazoliummethyl imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid used as the electrolyte. The complete manipulator is fabricated as a monolithic structure using commercially available off the shelf materials by additive manufacturing technique including a syringe type printer. Its workspace and dynamics are characterised and the results are compared with a multiphysics model based on the finite element method. The model uses two types of charge storage mechanism namely electrical double layer and redox reactions to describe the electrode kinetics. Through simulation the charge contributed by each of the processes is separated and presented providing new insights in the underlying kinetics in this type of actuators. It is found the double layer charge is the dominant phenomenon driving these actuators compared to the redox process. Finally, to demonstrate the versatile applications, the manipulator is explored for a four-way laser steering application. This work has demonstrated high levels of manipulability along three degrees of freedom from the printed CP actuators that are outstanding within the class of soft ionic actuators while using off the shelf commercially available materials keeping the fabrication method simple, scalable and cost-effective along with the electro-chemo-mechanical model providing an insightful view of the charge storage mechanism.Funding Agencies|European Unions Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant [641822]; Estonian Research Council, Linkoping University [IUT20-24]; Swedish Research CouncilSwedish Research Council [VR-2014-3079]; Promobilia Stiftelsen [F17603]</p

    Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions

    No full text
    In this work, we address the problem of position control of ionic electroactive polymer soft actuators under varying relative humidity conditions. The impact of humidity on the actuation performance of ionic actuators is studied through frequency response and impedance spectroscopy analysis. Considering the uncertain performance of the actuator under varying humidity conditions, an adaptable model using the neural network method is developed. The model uses relative humidity magnitude as one of the model parameters, making it robust to different environmental conditions. Utilizing the model, a closed-loop controller based on the model predictive controller is developed for position control of the actuator. The developed model and controller are experimentally verified and found to be capable of predicting and controlling the actuators with excellent tracking accuracy under relative humidity conditions varying in the range of 10–90%
    corecore